Makhanchor.jpg भारतकोश की ओर से आप सभी को कृष्ण जन्माष्टमी की हार्दिक शुभकामनाएँ Makhanchor.jpg

आतानक विश्लेषण  

आतानक विश्लेषण (टेंसर ऐनालिसिस) का मुख्य उद्देश्य ऐसे नियमों की रचना और अध्ययन है, जो साधारणतया सहचर (कोवैरिऐंट) रहते हैं, अर्थात्‌ यदि हम नियामकों की एक संहति से दूसरी में जाएं तो ए नियम ज्यों के त्यों बने रहते हैं। इसीलिए अवकल ज्यामिति के लिए यह विषय महत्वपूर्ण है।

इस विषय के पुराने विचारकों में गाउस, रीमान और क्रिस्टॉफ़ेल के नाम उल्लेखनीय हैं। किंतु इस विषय को व्यवस्थित रूप रिची और लेवी चिविता ने दिया। इन्होंने इस विषय का नाम बदलकर निरपेक्ष चलन कलन (ऐब्सोल्यूट डिफ़रेशियल कैल्कुलस) कर दिया। इस विषय का प्रयोग अनुप्रयक्त गणित की बहुत सी शाखाओं में होता है।

मान लीजिए, एक त्रिविस्तारी अवकाश (स्पेस) अ३है जिसके प्रत्येक बिंदु पा के नियामक तीन वास्तविक राशियों य१य२ य३ पर आश्रित हैं। मान लीजिए, पा के निकट ही फा एक दूसरा बिंदु है जिसके नियामक (य1+ताय12+ताय23+ताय3) हैं, तो इस अवकल कुलक (सेट ऑव डिफ़रेंशियल्स)

ताय'1 ताय'2 ताय'3

को एक सदिश (वेक्टर) कहते हैं; या यों कहिए कि बिंदुयुग्म पा, फा को एक सदिश कहते हैं।

मान लीजिए, हम य'1, य2, य3,को एक दूसरी नियामक पद्धति य'1 य'2 य'3 में परिवर्तित करते हैं, जो ऐसी है कि पहले नियामक दूसरे नियामकों के सतत फलन हैं। इसके अतिरिक्त अवकल गुणक

तय1 तय2 तय3 तय1 तय2

तय1 तय2 तय3 तय1 तय3

भी सतत हैं (जहाँ त º ¶ )और जैकोबियन

त (य1, य2, य3,)

त (य1', य2', य3',)

परिमित है, पर शून्य नहीं तो हमारे परिवर्तनसूत्र इस प्रकार के होंगे:

ताय1' =ताय1/ताय3 * ताय2

अब मान लीजिए, का1, का2, का3 तीन राशियाँ हैं, तो इनका रूपांतर इस के सूत्रों से होगा:

ताय1'=ताय1/ताय3 * ताय2

तो इस राशि कुलक का1, का2, का3 को पदवी एक के प्रतिचल आतानक (कंट्रावैरिऐंट टेंसर ऑव रैंक वन) कहेंगे और राशियाँ का1, का2, का3, उक्त आतानक के 3 संघटक कहलाएँगी। साधारणतया आतानकों में उच्च प्रत्यय लगाए जाते हैं

इसके अतिरिक्त, यदि का1, का2, का3, तीन राशियाँ हों, जिनके पविर्तनसूत्र इस प्रकार के हों:

ताय2'=ताय3/ताय3 ,* ताय2

तो उनके कुलक को सहचर आतानक (कोवैरिऐंट टेंसर) कहते हैं। इन राशियों के लिए निम्नलिखित प्रत्ययों का प्रयोग किया जाता है।[1]

पदवी 1 के इन तीनों प्रकार के आतानकों को सदिश (वेक्टर) भी कहते हैं इस प्रकार, यदि स२ राशियाँ काचछ हों, जिनका परिवर्तनसूत्र हो तो वे भी एक सहचल का सृजन करती हैं और जो राशियाँ काचछ हों, जिनका परिवर्तनसूत्र

हो,तो वह पदवी 2 के एक प्रतिचल का सृजन करती हैं। स्पष्ट है कि हम इन परिभाषाओं का किसी भी पदवी तक विस्तार कर सकते हैं। पदवी. के आतानक को अदिश भी कहते हैं। यह य का एकाकी फलन होता है, जो नियामकों के किसी भी परितर्वन फ'= फ के लिए निश्चल (इन्वैरिएँट) रहता है।[2]


पन्ने की प्रगति अवस्था
आधार
प्रारम्भिक
माध्यमिक
पूर्णता
शोध

टीका टिप्पणी और संदर्भ

  1. हिन्दी विश्वकोश, खण्ड 1 |प्रकाशक: नागरी प्रचारिणी सभा, वाराणसी |संकलन: भारत डिस्कवरी पुस्तकालय |पृष्ठ संख्या: 362 |
  2. सं.ग्रं.-एल.पी.आइज़ेनहार्ट : कंटिन्युअस ग्रूप्स ऑव ट्रैंसफॉर्मेशंस (1933); ओ.वेब्लेन : इन्वैरिएँटस ऑव क्वाड्रैटिक डिफ़रेंशियल फ़ार्म्स (1927); ए.डी. माइकेल : मैट्रिक्स ऐंड टेंसर कैलक्युलस विद ऐप्लिकेशन्स टु मेकैनिक्स, इलैस्टिसिटी ऐंड एअरोनॉटिक्स (1946)।

संबंधित लेख

वर्णमाला क्रमानुसार लेख खोज

                              अं                                                                                                       क्ष    त्र    ज्ञ             श्र   अः



"https://bharatdiscovery.org/bharatkosh/w/index.php?title=आतानक_विश्लेषण&oldid=630536" से लिया गया