भू-भौतिकी  

भू-भौतिकी (अंग्रेज़ी: Geophysics) शुद्ध और अनुप्रयुक्त पृथ्वी की भौतिकी है। इसके अंतर्गत पृथ्वी की संबंधी सारी समस्याओं की छानबीन होती है। साथ ही यह एक प्रयुक्त विज्ञान भी है, क्योंकि इसमें भूमि समस्याओं और प्राकृतिक रूपों में उपलब्ध पदार्थों के व्यवहार की व्याख्या मूल विज्ञानों की सहायता से की जाती है। इसका विकास भौतिकी और भौमिकी से हुआ है। भूविज्ञानियों की आवश्यकता के फलस्वरूप नए साधनों के रूप में इसका जन्म हुआ।

विज्ञान की शाखाओं या उपविभागों के रूप में भौतिकी, रसायन, भूविज्ञान और जीवविज्ञान को मान्यता मिले एक अरसा बीत चुका है। ज्यों-ज्यों विज्ञान का विकास हुआ, उसकी शाखाओं के मध्यवर्ती क्षेत्र उत्पन्न होते गए, जिनमें से एक भूभौतिकी है। उपर्युक्त विज्ञानों को चतुष्फलक के शीर्ष पर निरूपित करने पर यह बात स्पष्ट हो जाती है। चतुष्फलक की भुजाएँ नए विज्ञानों को निरूपित करती है।

भू-भौतिकी के उपविभाग

प्रयोग और सिद्धांत की नई प्रविधियों और औज़ारों की प्रयुक्ति भू-समस्याओं पर करने के साथ साथ अन्वेषण के नए नए क्षेत्र प्राप्त होते गए, जिनका समावेश भूभौतिकी में कर लिया गया। अब भूभौतिकी के निम्नलिखित लगभग दस उपविभाग है : (ग्रह विज्ञान), वायुविज्ञान, मौसम विज्ञान, जलविज्ञान, समुद्र विज्ञान, भूकंप विज्ञान, ज्वालामुखी विज्ञान, भूचुंबकत्व, भूगणित और विवर्तनिक भौतिकी (Tectonic physics)।

अनुप्रयुक्त भू-भौतिकी के अंतर्गत धरती की सतह पर भौतिक मापनों से अधस्तल (subsurface) की भौमिक सूचनाएँ प्राप्त होती हैं। इसे भूभौतिक पूर्वेक्षण भी कहते हैं और इसका उद्देश्य उपयुक्त उपकरणों से घनत्व वैषम्य, प्रत्यास्थी गुणधर्म, चुंबकत्व विद्युत्संवाहकता और रेडियोएक्टिवता आदि मापकर पेट्रोलियम पानी, खनिज और रेडियोऐक्टिव तथा खंडनीय पदार्थों का स्थान निर्धारण करना है।

भू-भौतिक अनुसंधानों और प्रेक्षणों का समन्वय करने के लिये 'इटरनेशनल यूनियन ऑव जिमॉडिसि ऐंड जिओफिजिक्स' नामक संस्था का संगठन किया गया है। इसे संसार के सभी राष्ट्रों के राष्ट्रीय भूभौतिक संस्थानों का सक्रिय सहयोग प्राप्त है। इस संस्था की भूभौतिक मापनों के कार्यक्रम की सक्रियता कभी कभी एक दो वर्षों के लिये काफ़ी तेज हो जाती है, जैसे अतीत में दो बार अंतरराष्ट्रीय भूभौतिक वर्ष सन्‌ 1957-1958 में ऐसा किया गया।

भू-भौतिकी में सभी भौतिक प्रक्रमों और पृथ्वी के केंद्र से वायुमंडल के शीर्षस्थ तक के सब पदार्थों के गुणों का अध्ययन तथा अन्य ग्रहों के संबंध में इसी प्रकार का अध्ययन होता है। इसकी सभी शाखाओं के विषयक्षेत्र का संक्षिप्त विवेचन प्रस्तुत है-

ग्रह विज्ञान

यह विज्ञान चंद्रमा, बुध, शुक्र, मंगल, बृहस्पति आदि ग्रहों के पृष्ठ और पर्यावरण के अध्ययन की वैज्ञानिक विधियों से संबंधित है। इससे जो जानकारी मिलती है, वह मनुष्य की ज्ञानराशि की अभिवृद्धि करती ही है, साथ ही उसकी भावी अंतरिक्षयात्रा में भी सहायक होती है। मापन के लिये भू-स्थित स्पेक्ट्रमी प्रकाशलेखी रेडियो और रेडियोमापी विधियों का प्रयोग किया जाता है। रेडा और रेडियो आवृत्तियों के विस्तृत परास (range) का उपयोग करके ग्रहों की पृष्ठीय रुक्षता, गहराई, भौतिक गुण, धूल परत और वायुमंडल का निर्धारण संभव होता है। ग्रहों के गुरुत्व, चुंबकी क्षेत्र, दाब, ताप, पृष्ठीय भूविज्ञान और वायुमंडल की विद्युत अवस्था ज्ञात करने की विधियों का आविष्कार किया जा चुका है। कृत्रिम उपग्रह तथा उपग्रह पर स्थित उपकरणों से अन्य ग्रहों पर जीवन या वनस्पति की उपस्थिति, या इनके अनुकूल परिस्थिति, की छानबीन की जा रही है। निकट भविष्य में रेडियो तारा उपगूहन (occultation) और द्विस्थैतिक रेडार (bistatic radar) के प्रयोगों से सौर किरीट, अयनमंडल तथा ग्रहीय वायुमंडल के बारे में बहुत सी बातें मालूम हो जाएँगी।

वायु विज्ञान

विज्ञान की यह शाखा सौ किलोमीटर से अधिक ऊँचाई के पृथ्वी के वायुमंडल की घटनाओं से संबंधित है। इतनी ऊँचाई पर हवा अत्यधिक आयनित होती है, परमाणु और इलेक्ट्रॉनों के औसत मुक्तपथ दीर्घ होते हैं और वहाँ पदार्थों का भौतिक व्यवहार जितना घनत्व और अन्य संहति गुणों पर निर्भर करता है उतना या उससे अधिक विद्युत गुणों पर निर्भर करता है। पृथ्वी के वायुमंडल की बाह्य सीमा को भी स्पष्ट पृष्ठ नहीं है, बल्कि अंतर्ग्रहीय अवकाश में सापेक्ष रिक्ति की ओर इसका क्रमश: संक्रमण है। इस संक्रमण के कटिबंधों में पृथ्वी के वायु मंडलीय पदार्थों और बाहर से आने वाले विकिरणों और कणों में निरंतर परस्पर क्रिया होती है। वायुविज्ञान इन घटनाओं और भू-परिस्थियों पर इनके महत्व से संबंधित है। लगभग 300 किलोमीटर ऊँचाईं पर वायुमंडल का ताप लगभग 1500° सेंटीग्रेंड है। अत: पृथ्वी के वायुमंडल के निचले फैलाव के ऊपर उड्डयन में सुरक्षा के लिये ऊँचाइयों पर वायुमंडल के गुणों का अध्ययन बहुत आवश्यक है।

मौसम विज्ञान

यह वायुमंडल और भूपृष्ठ के निकटवर्ती वायुमंडल की विभिन्न घटनाओं से संबंधित हवा और मौसम का विज्ञान है। मौसम विज्ञानी ताप, दाब, पवन, मेघ, वर्षण आदि वायुमंडल के लक्षणों को प्रेक्षित करके, बाह्य प्रभावों और भौतिकी के मौलिक नियमों के आधार पर, वायुमंडल की प्रेक्षित संरचना और उद्भव की व्याख्या करने का प्रयत्न करता है। पवन और मौसम के जैसे प्रेक्षित चरों (variables) के प्रतिमानों (patterns) के आनुभविक संबंधों को खोज और व्याख्या करने योग्य समस्या के रूप में उभारकर, विज्ञान की प्रयुक्ति के लिये आवश्यक बातों की व्यवस्था करने का प्रयत्न किया जाता है। किसी भी स्थान के तथा किसी भी समय के वायुमंडल की दशा की जानकारी के लिये हवा की भौतिकी और संघटन का ज्ञान आवश्यक है। वर्ष भर की मौसमी अवस्थाओं के मिश्र सामान्यकरण से जलवायु का स्वरूप संघटित होता है। संक्षिप्त मौसम विज्ञान के अंतर्गत, व्यापक क्षेत्र में एक ही समय में किए गए प्रेक्षणों के आधार पर, वायुमंडलीय लक्षणों का विवेचन होता है। मौसम विज्ञानीय खोजों में ऊष्मागतिक और द्रवगतिक सिद्धांतों का प्रयोग सहकारी रूप में द्रुत गति से किया जा रहा है। आधुनिक काल में मौसम पूर्वानुमान और भौतिक जलवायु विज्ञान, इन दोनों का आधार वायुमंडल में प्राकृतिक रूप से उत्पन्न गतियों का अध्ययन है। गतिज मौसम विज्ञान के अंतर्गत वायुमंडल में सहज रूप से उत्पन्न गति तथा उससे संबंद्ध ताप, दाब, घनत्व और आर्द्रता के वितरणों का अध्ययन होता है। यह मौसम के पूर्वानुमान और जलवायु विज्ञान का आधार है।

जल विज्ञान

यह पानी, उसके गुण, वितरण और स्थल पर परिसंचरण का विज्ञान है। यह विज्ञान भुपृष्ठस्थ पानी, मिट्टी में स्थित पानी, अध:स्थ शैलजल, वायुमंडल में जल संबंधी पक्ष और जो बातें भूपृष्ठ पर वाष्पीकरण तथा वर्षण को प्रभावित करती हैं, उनसे संबंधित है। इसमें हिमानी विज्ञान, अर्थात्‌ हिम (snow) और बर्फ (ice) के रूप में भूजल का अध्ययन, समाविष्ट है। चूँकि आधुनिक जल विज्ञान में जल संबंधी मात्रिक अध्ययन किया जाता है अत: यह एक महत्त्वपूर्ण विषय है। जलविज्ञानीय चक्र, जिसके अनुसार जल समुद्र से वायुमंडल में और वायुमंडल से स्थल पर आता है और अंत में समुद्र में पहुँच जाता है, जल विज्ञान का आधार है। वर्षण के बाद जल की अवस्थाओं का अध्ययन जल विज्ञान में होता है। हिमनदी की प्रगति और प्रत्यावर्तन की दर से भी यह विज्ञान संबंद्ध है। जल विज्ञान में जल की प्राप्ति, गति और कार्य संबंधी सिद्धांत है। जल विज्ञान में जल की प्राप्ति, गति और कार्य संबंधी सिद्धांत और नियमों को प्रतिपादित करने वाले मूल आँकड़ों का अध्ययन समाविष्ट है।

समुद्र विज्ञान

इसमें समुद्र का वैज्ञानिक अध्ययन होता है तथा समुद्र की द्रोणी की आकृति और बनावट, समुद्री पानी के भौतिक और रासायनिक गुण, समुद्रीधारा, तरंग तथा ज्वार का अध्ययन समाविष्ट है। इसमें पृथ्वी की ठोस तथा गैस अवस्थाओं के साथ समुद्र के सारे प्रक्रमों की व्याख्या करने की कोशिश की जाती है। आधुनिक समुद्र विज्ञान प्रयोगशालीय अध्ययन के साथ ही उपयुक्त जलयानों की सहायता से समुद्र विज्ञानीय सर्वेक्षण का विषय है। समुद्री पानी, तलछट और जैव नमूनों को एकत्र करने तथा परखने के उपकरणों से सज्जित, अनुसंधान पोत समुद्र के अनंत विस्तार की छानबीन करते ही रहते हैं। समुद्री धाराओं का गतिविज्ञान ओर ऊष्मागतिकी, बड़े पैमाने पर बहने वाली समुद्री और वायुवाहित धाराओं के सिद्धांत तथा गहरे जल का परिसंचरण, इन सबकी समस्याएँ वायुमंडल की संगत समस्याओं से मिलती जुलती है। समुद्र और वायुमंडल में वाष्पीकरण तथा ऊष्मा विनिमयन प्रक्रमों का मौसम विज्ञान में बहुत महत्व है। समुद्री पानी के अधिकांश गुण ताप, खारापन और दाब पर निर्भर करते हैं। जिन्हें उपकरणों की सहायता से प्रत्यक्ष रूप से ज्ञात किया जा सकता है। मनुष्य के लिये मछलियाँ और खनिज आर्थिक महत्व के है। रेडियोऐक्टिव विधियों से महासागरीय तलछटों का काल निर्धारित किया जाता है।

भूकंप विज्ञान

यह भूकंपों तथा भूकंप तरंगों से उद्घाटित पृथ्वी की अंतरंग अवस्था का विज्ञान है। यह एक नूतन विज्ञान है, जिससे पृथ्वी के अंतरंग के बारे में काफ़ी महत्त्वपूर्ण जानकारी प्राप्त हुई है, भूकंप विज्ञान की महत्त्वपूर्ण प्रगति का आरंभ लगभग 1880 ई. में भूकंपलेखी उपकरण के आविष्कार के साथ हुआ। भूकंप, या विस्फोट, उन भूकंपतरंगों के स्रोतों को प्रस्तुत करता है जो पृथ्वी के अंतरंग में प्रसारित होती हैं और जिनका निर्गत भूकंपलेखी द्वारा अंकित होता है। तरंगविश्लेषण से अधस्तल (subsurface) की बनावट और कभी-कभी स्रोत की क्रियाविधि भी ज्ञात हो जाती है विस्फोटों ओर भूकंपों से उत्पन्न भूकंपतरंगे भूगति उत्पन्न करती है। लघुतम और बृहत्तम भूगति में 108 गुना का विचलन हो सकता है। इसलिये अनेक प्रकार के भूकंपलेखियों की अभिकल्पना हुई है, जैसे लोलक और विकृति भुकंपलेखी। लोलक भूकंपलेखी श्लथ युग्मित, जड़त्वीय द्रव्यमान (loosely coupled inertial mass) और भूमि के मध्य की सापेक्ष गति को मापता है। कुछ उपकरणों में प्रकाशीय आवर्धन (optical magnification) का उपयोग किया जाता है और कुछ में विद्युतचुंबकीय ट्रांसडयूसर (electromagnetic transducer), धारामापी, इलेक्ट्रॉनिक प्रवर्धक (amplifier) और प्रकाश विद्युत सेल के उपयोग से उच्चतर आवर्धन प्राप्त किया जाता है। रैखिक विकृति (linear strain) भूकंपलेखियों में आधार शैल पर 100 फुट के अंतर पर दो स्तंभ स्थिर किए जाते हैं। एक स्तंभ से संगलित स्फटिक की दृढ़ नली संबंद्ध होती है। अनुदैर्ध्य दिशा में नली की स्वातंत्रय संख्या एक होती है और ख़ाली जगह में स्थित एक सूक्ष्मग्राही ट्रांसडयूसर, नली के कंपनों का संसूचन करता है। भूकंपकेंद्र से ऊर्जा तीन प्रकार की तरंगों के रूप में चलती है, जिन्हें प (P) या अनुदैर्ध्य तरंग, स (S) या अनुप्रस्थ तरंग ओर पृष्ठ तरंग कहते हैं। स तरंग तरल पदार्थ में यात्रा नहीं कर सकती। तरंगवेग माध्यम के प्रत्यास्थ स्थिरांक और घनत्व पर निर्भर करता है। भूकंपलेखी के अंकनों से अनुर्दर्ध्य और अनुप्रस्थ तरंगों को पहचाना जा सकता है। वेग-गहराई वक्र के विश्लेषण से पृथ्वी के अंतरंग के अनेक उपविभागों का नामकरण संभव है। इन प्रविधियों से ही हम जानते हैं कि पृथ्वी के केंद्र में लोह निकल क्रोड है, जिसका अर्धव्यास पृथ्वी के अर्धव्यास के आधे से अधिक है।

ज्वालामुखी विज्ञान

यह ज्वालामुखी और उससे संबंधित घटनाओं का विज्ञान है, जो मैग्मा (magma) और संबद्ध गैसों के पृष्ठीय उद्भेदन तथा उससे उत्पन्न संरचनाओं, निक्षेपों और अन्य प्रभावों से संबद्ध है। पृथ्वी के पृष्ठ पर जो प्रभाव देखने में आते हैं, वे गहराई की घटनाओं के परिणामस्वरूप होते हैं। अत: ज्वालामुखी विज्ञान में अधिकांश वितलीय, मैग्मज भूविज्ञान सम्मिलित रहता है।

पर्वत और अन्य पटल-विरूपणी (diastrophic) बलों से भूपृष्ठ में उत्पन्न दरारें वे वाहिकाएँ हैं, जिनसे मैग्मा पृष्ठ की ओर उठता है। दरारों की चौड़ाई लगभग 1 फुट से लेकर 10 फुट से अधिक तक हो सकती है। उद्भेदी तरल, गैस या लावा शंक्वाकार पर्वत की रचना करते हैं। इस क्रोड़ के केंद्र या बगल से पुन: उद्भेदन हो सकता है। उद्भेदी मैग्मा तरल शैल का बना होता है, जिसमें गैसें घुली होती हैं। लावा का ताप और उसकी श्यानता (viscosity) विशिष्ट उपकरणों से मापी जाती है। ज्वालामुखी उद्भेदन का स्वरूप मुख्यत: तरल मैग्मा से निर्धारित होता है। उदभेदन कई प्रकार के होते हैं, जिनका नामकरण ज्वालामुखी के नाम पर, या जिस क्षेत्र में ज्वालामुखी होता है उसके नाम पर, करते हैं मापने से पता चला है कि पर्वत के नीचे एक प्रकार के आगार में मैग्मा के अंत:क्षेपण से पहले सारा ज्वालामुखी पर्वत फूल जाता है। उद्भेदन के समय, या ठीक बाद ही, ज्वालामुखी पर्वत सिकुड़ते हैं। ज्वालामुखीय उद्भेदन से पहले अनेक भूकंप होते हैं। इन उद्भेदनों से वायुमंडल में आघात तरंगें उत्पन्न होती हैं। कभी कभी पानी के अंदर ज्वालामुखीय विस्फोट होने पर, भीमकाय भूकंपी सिधुतरंगें (tsunamis) उत्पन्न होती हैं।

भूचुंबकत्व या पृथ्वी के चुबंकत्त्व का विवेचन करने वाली विज्ञान की शाखा है। पृथ्वी एक विशाल चुंबक है, जिसका अक्ष लगभग पृथ्वी के घूर्णन अक्ष पर पड़ता है। पृथ्वी के भूचंबकीय क्षेत्र का स्वरूप प्रधानत: द्विध्रुवी है और यह पृथ्वी के गहरे अंतरंग में उत्पन्न होता है। क्रोड के अक्ष ध्रुव पर चुंबकीय तीव्रता 5 गाउस है। निर्बाध विलंबित चुंबकीय सुई से दिक्पात, अर्थात् चुंबकीय बलरेखा और क्षितिज के बीच का कोण, ज्ञात होता है। विश्व की अनेक चुंबकीय वेधशालाओं में नियमित रूप से चुंबकीय अवयवों का मापन निरंतर किया जाता है। ये अवयव हैं, दिक्पात, दि (D), नति, न (I), तथा पार्थिव चुंबकीय क्षेत्र की संपूर्ण तीव्रता ब (F), जिसके घटक, क्ष (H), क (X), ख (Y) तथा ग (Z) हैं। इन अवयवों का दीर्घकालीन परिवर्तन, शताब्दियों बाद हुआ करता है। क्यूरी (Curie) बिंदु से निम्न ताप पर शीतल हुआ ज्वालामुखी लावा, जमती हुई तलछट और प्राचीन ईंट, प्रेरित चुंबकत्व का अध्ययन पैलियोमैग्नेटिज्म (Palaeomagnetism) कहलाता है और शताब्दियों, सहस्त्राब्दियों, या युगों पूर्व के भूचुंबकीय परिवर्तनों की जानकारी प्रदान करता है।

पृथ्वी के चुंबकीय क्षेत्र में होने वाले बड़े विक्षोभों को चुंबकीय तूफान कहते हैं। चुंबकीय तूफानों की तीव्रता ध्रुवीय प्रकाश के क्षेत्रों में सर्वाधिक होती है। ऐसा प्रतीत होता है कि सूर्य से निष्कासित, आयनित गैसों की धाराओं या बादलों से, जो पृथ्वी तक पहुँच जाते हैं, चुंबकीय तूफानों की उत्पति होती है। असामान्य सूर्य धब्बों की सक्रियता के अवसरों पर अनियमित या क्षणिक चुंबकीय परिवर्तन हुआ करते हैं। माप के लिये अनेक प्रकार के चुंबकत्वमापी हैं। निरपेक्ष चुंबकत्व किसी कुंडली में प्रवाहित विद्युतधारा के ज्ञात क्षेत्र और भूचुबंकीय क्षेत्र की तुलना पर आधारित होते हैं। परिवर्ती प्रेरकत्व (variometers) गौण यंत्र है और सापेक्ष मापन करते हैं। फ्लक्स गेट (flux gate) चुंबकत्वमापी और प्रोटॉन चुंबकत्वमापी अधिक सूक्ष्मग्राही हैं।

भूगणित

यह पृथ्वी के आकार, विस्तार और गुरुत्वीय क्षेत्र का विज्ञान है। इसके अंतर्गत गुरुत्वीय अपकेंद्री क्षेत्रों के मापनों से निर्धारित पृथ्वी के पृष्ठ के ऊपर जहाँ तक गुरुत्वीय क्षेत्र के प्रभाव की पहचान संभव है वहाँ तक उसके वितरण का अध्ययन भी इसके अंतर्गत होता है। भूभौतिकी की अन्य शाखाओं की सहायता से भूगणित द्वारा भूपटल की बनावट और संलग्न अध:स्तर (substrata) की बनावट का अध्ययन किया जाता है सम्यक्‌ भूमापन (mapping) और चार्ट निर्माण के लिये आवश्यक मापन और परिकलन करना भूगणित का व्यावहारिक उद्देश्य है। पृथ्वी के बड़े वृत्त के एक चाप अ (a) को भूगणितीय विधि से मापकर और वक्रताकेंद्र पर इस चाप द्वारा बनाए कोण a को खगोलिय विधि से मापकर पृथ्वी का आकार और विस्तार निर्धारित किया जाता है। अ (a) और a के अत्यंत यथार्थ मान प्राप्त करने की आधुनिक तकनीकियों में त्रिभुजा (triangulation), शोरन (Shoran), हिरन (Hiran) और अन्य वैद्युत एवं अन्य खगोलिय विधियाँ सम्मिलित हैं, जिनमें कृत्रिम उपग्रह और अत्यंत परिष्कृत खगोलीय दूरबीनों और संक्रमणों का उपयोग होता है। त्रिभुजन विधि का आधार यह है कि किसी भी त्रिभुज का आधार और दो कोण ज्ञात हों, तो त्रिभुज पूर्णत: निश्चित हो जाता है। इस त्रिभुज की एक भुजा को आधार बनाकर उत्तरोत्तर त्रिभुजों से सारे क्षेत्र को पाट देते हैं। पृथ्वी का अंतरांश दृढ नहीं है, अत: सूर्य और चंद्र के आवर्ती ज्वारीय बल से भूपटल निरस्त हो जाता है इस ज्वारीय प्रभाव को गुरुत्वमापी से मापा जाता है।

विवर्तनिक भौतिक

यह भूवैज्ञानिक रचनाओं के निर्माण में संलग्न भौतिक प्रक्रियाओं का विज्ञान है। इसमें पृथ्वी के विस्तृत रचनात्मक लक्षणों और उनके कारणों, जैसे पर्वत रचना, शैलयांत्रिकी एवं शैल का सामर्थ्य तथा उससे संबद्ध भौतिक गुणों, का मापन तथा अध्ययन किया जाता है भूवैज्ञानिक समस्याओं में भौतिकी के अनुप्रयोग से विवर्तनिक भौतिकीविद् को पृथ्वी के संबंध में अनेक गूढ़ जानकारियाँ प्राप्त करने का सुयोग मिला है।

अब भूपटल और उच्च प्रावार (upper mantle) के अध:स्तर एवं स्थल सतह के अनेक उपविभाग करना संभव हो गया है। मध्य महासागरीय एवं महाद्वीपी विभंग (fracture) पद्धति के भूवैज्ञानिक और भूभौतिक लक्षणों से प्रकट है कि यह दो प्रकार के अवयवों से जिन्हें प्राथमिक और गौण चाप कहते हैं, बना है और विकास की भिन्न भिन्न अवस्थाओं में इनकी अनेक पुनरावृत्तियाँ हो चुकी हैं। भूपटल और ऊपरी प्रावार में भूवैज्ञानिक युटिजनक बल और उनके पैटर्नी महाद्वीपीय च्युति और ध्रुवीय परिभ्रमण के लिये अप्रत्यक्ष रूप से उत्तरदायी हो सकते हैं। भ्रशन और वलन की गतिकी और पृथ्वी के पदार्थों के यांत्रिक व्यवहार पर मॉडलों की सहायता से अनेक महत्त्वपूर्ण प्रयोग किए गए हैं। विवर्तिनक विकृति की दर प्रतिबलों और उनकी अवधि पर निर्भर करती है। ए. ई. शाइडेगर (A.E. Scheidegger) ने प्रतिबलों को छोटी, बड़ी और मध्य अवधि के आधार पर वर्गीकृत किया है। छोटी अवधि लगभग चार घंटे की, मध्य अवधि चार घंटे से 15000 वर्षों तक की और लंबी अवधि 15000 वर्षों से करोड़ों वर्षों तक की होती है।

अनुप्रयुक्त भूभौतिकी

अनुप्रयुक्त भूभौतिकी, या भूभौतिक पूर्वेक्षण में पृथ्वी के पृष्ठ पर भौतिक मापों के द्वारा अधस्थल भूवैज्ञानिक जानकारियों का संग्रह किया जाता है। इसका उद्देश्य खनिज, पेट्रोलियम, जल, घात्विक निक्षेप, विखंडनीय पदार्थो का स्थान-निर्धारण और बाँध, रेलमार्ग, हवाई अड्डों, सैनिक और कृषि प्रायोजनाओं के निर्माणार्थ सतह के निकटस्थ स्तर के भूवैज्ञानिक लक्षणों से आँकड़ों का संग्रह है। भूवैज्ञानिक अन्वेषण की प्रविधियाँ मूलत: इस तथ्य पर निर्भर करती है कि खनिज निक्षेप और भूवैज्ञानिक स्तर के घनत्व, चुंबकत्व, प्रत्यास्थता, विद्युच्चालकता और रेडियोऐक्टिवता जैसे भौतिक गुण भिन्न होते हैं, वे पृथ्वी के गुरुत्व क्षेत्र या चुंबकत्व क्षेत्र में असंगति उत्पन्न करते हैं और उनका स्थान निर्धारण गुरुत्वमापी, या चुंबकीय विधियों, से किया जा सकता है। कुछ लक्षणों का अध्ययन अल्प प्रत्यक्ष विधि से, जैसे पेट्रोलियम पूर्वेक्षण में अपनति (anticlines) लवण गुंबद या भ्रंश ट्रैप (fault trap) जैसी सीमित संरचनाओं के गुण मापकर, करते हैं। गुरुत्व वैद्युत और चुंबकीय क्षेत्र जैसी प्राकृतिक घटनाओं, या आयोजित जैसे प्रेरित प्रभावों से उत्पन्न भूकंपतरंगों को मापने की विधियाँ उपलब्ध है। सामान्यता मापन कार्य पृथ्वी पर, विमानों में, अंतर्देशीय या तटीय जलपृष्ठ पर उपलब्ध, अथवा विशेष रूप से निर्मित ओर छिद्रों (bore holes) से किया जाता है। भूभौतिक पूर्वेक्षण की प्रत्येक तकनीक का संक्षिप्त विवरण निम्नलिखित है-

गुरुत्व अन्वेषण

ध्रुवों के चिपटेपन और विषुवत्‌ के उभार के कारण पृथ्वी का गुरुत्व ध्रुवों से विषुवत की ओर ह्रासोन्मुख होता है। प्रेक्षण बिंदु की ऊचाई और पर्यावरण की स्थलाकृति के अनुसार गुरुत्व बदलता है। इन एवं अन्यान्य प्रभावों के लिये प्रेक्षित गुरुत्वमानों का समायोजन किया जाता है। मान लिया जाता है कि अवशिष्ट मान प्रत्यक्षत: स्थानीय भौमिकी से संबंद्ध है। गुरुत्व अन्वेषण का आधार यही है। पेट्रोलियम और खनिजों के स्थान निर्धारण में यह अन्वेषण उपयोगी है। धात्विक अयस्क पिंड प्राय: सामान्य आकार के होते हैं और समान आयतन की प्रतिवेशी चट्टानों से इनके घनत्व का अंतर भी कम होने के कारण, अयस्क पिंडों के गुरुत्व प्रभाव स्थानीय और क्षीण होते हैं; फलत: गुरुत्व सर्वेक्षण का व्यापक होना आवश्यक है। प्रभावी गुरुत्व असंगति उत्पन्न करने के लिये अयस्क पिंड की गहराई जितनी अधिक होगी, अयस्क आकार में उतना ही बड़ा होता है। पेट्रोलियम के संदर्भ में घनत्व अंतर अल्प होने पर भी पिंडों के आकार की विशालता ओर संहति की न्यूनता या अधिकता के कारण परिमाण महत्त्वपूर्ण निकलते हैं।

लगभग सभी गुरुत्व प्रेक्षण होते हैं। प्रेक्षणबिंदुओं के बीच के अंतर निर्धारित कर लिए जाते हैं, पर उनके चरम मान अज्ञात रह जाते हैं। आधारबिंदु को ऐच्छिक मानकर निर्दिष्ट किया जाता है और अन्य सभी मान इसके आपेक्षिक होते हैं। प्रेक्षण स्थलों के बीच की दूरी घनत्व की दूरी घनत्व विपर्यासों (contrasts) वाली संरचना की गहराई की आधी से अधिक न होनी चाहिए।

जिस गुरुत्वमापी उपकरण का उपयोग होता है उसके अनेक रूप होते हैं। उपकरण के सरलतम रूप में कमानी से एक द्रव्यमान निलंबित होता है। गुरुत्व में वृद्धि होने से द्रव्यमान का भार बढ़ता है और तदनुरूप कमानी का विस्तार होता है। निलंबित द्रव्यमान में ज्ञात भार जोड़ने से उत्पन्न हुए विक्षेप का प्रेक्षण कर, या निर्धारित गुरुत्व अंतर के दो प्रेक्षण स्थलों पर गुरुत्व मापकर, गुरुत्वमापियों को अंशांकित किया जाता है। गुरुत्व अन्वेषण के प्रारंभिक काल में अटवश (Eotvos) मरोड़तुला को मापती है। गुरुत्वमापी के आविष्कार के साथ ही मरोड़तुला दो कारणों से लुप्त हो गई। पहला यह कि यह उपकरण स्थानीय अनियमितताओं के प्रति अत्यधिक सुग्राही होता था और दूसरा यह कि इसके द्वारा प्रेक्षण करने में कई घंटों का समय लग जाता था। पूर्वेक्षण की मध्यमालीन स्थिति में गुरुत्वदोलक का प्रयोग होता था ओर इनका प्रयोग गुरुत्वमापियों के आविष्कार से उठ गया, क्योंकि वे इनसे बहुत श्रेष्ठ सिद्ध हुए।

गुरुत्व

मानचित्रों (gravity maps) में गुरुत्व उच्च अैर निम्न होते हैं। कुछ सौ वर्ग मीलों के उच्च तथा निम्न गुरुत्व क्षेत्रीय और कुछ वर्ग मीलों, या इससे कम के, उच्च तथा निम्न गुरुत्व अंशक्षेत्रीय (subregional) कहलाते हैं। प्राकृतिक संपदाओं और खनिज अन्वेषणों के लिये इन स्थानीय विसंगतियों का ही प्रत्यक्ष महत्व है। इन स्थानीय विसंगतयों की प्रकृति संहत विसंगति की गहराई और विस्तार पर निर्भर करती है, जिससे वे संबद्ध होते हैं।

कल्पित संरचना और घनत्व वितरण की तदनुरूपी गुरुत्व असंगति के परिकलन के लिये शध्री परिकलनीय रीतियाँ उपलब्ध हैं। परिकलित असंगति की तुलना अब प्रेक्षित असंगति से की जा सकती है। अनेक प्रयत्नों के बाद कल्पित द्रव्यमान असंगतिके द्वारा प्रेक्षित गुरुत्व असंगति का कारण निरुपित करना संभव होता है। सही निर्णय पर पहुँचने के लिये उस क्षेत्र की भौमिकी का ज्ञान बड़ा सहायक होता है। स्रोत की गहराई, घनत्व और विमाएँ (dimensions) अनेकविध संयोग से सपरूप गुरुत्व असंगतियाँ उतपन्न कर सकती हैं, परंतु गुरुत्व आँकड़ों की सहायता से उस क्षेत्र की भौमिकी या अन्य प्रकार से स्रोत की गहराई एवं प्रकृति के संबंध में कुछ तथ्य निकाले जा सकते हैं।

चुंबकीय अन्वेषण

चुंबकीय तकनीकियों का आधार यह है कि सतह और उसके निकट चट्टानों के चुंबकन से ज्यामितीय क्षेत्र में स्थानीय परिवर्तन होते हैं। कुछ परिस्थितियों में यह परिवर्तन महत्त्वपूर्ण हो सकता है। आग्नेय और अवसादी (sedimentary) चट्टानों में सर्वाधिक व्यापक खनिज मैग्नेटाइट, लो3ओ4 (F O) है। पुंजीभूत रूप में मैग्नेटाइट का प्रभाव प्रसामान्य चुंबकीय क्षेत्र से अधिक होने के उदाहरण ज्ञात है। प्राय: आग्नेय भूभाग में, प्रसामान्य तीव्रता की 10% असंगति रहती है।

आग्नेय शैल उस समय स्थायी रूप से चुंबकित हो जाते हैं, जब वे तत्कालीन भूचुंबकीय क्षेत्र पर निर्भर दिशा और तीव्रता में क्यूरी बिंदु से शीतलित होते हैं। शैलों का चुंबकन प्रेरण द्वारा भी होता है। जिसकी दिशा और तीव्रता मूल स्थिति और वर्तमान भूचुंबकीय क्षेत्र के अंतर पर निभर करती है। भूचुंबकीय क्षेत्र में परिवर्तन धीरे धीरे होता है। पर्वतन गति (orogenic movements) के कारण चट्टानों की स्थिति और प्रेरित चुंबकनों की दिशा एक हो। अवसादी शैलों की चुंबकीय प्रवृत्ति (susceptibility) परिमाण में आग्नेय शैलों की अपेक्षा अनेक गुनी कम होती है। अत: अवसादी बेसिन क्षेत्रों की चुंबकीय असंगतियाँ सतह पर, या आग्नेय आधारों के अंदर, स्थलाकृतिक या चुंबकन प्रभावों से उत्पन्न होती है।

कभी-कभी अनुसंधेय अयस्क और चुंबकत्व का साहचर्य अप्रत्यक्ष होता है। प्लेसर निक्षेपों (placer depostits) की प्रणाल धाराओं में मैग्नेटाइट के साथ सोना प्राय: सांद्रित रहता है, और चुंबकीय सांद्रण का ज्ञान सोने का कारण बन सकता है।

पावरलाइन, वैद्युत अभिस्थापन और चुंबकीय विचरणों के दैनिक वक्र चुंबकीय मापनों में त्रुटि उत्पन्न करते हैं। चुंबकीय अवयवों के आकस्मिक अल्पकालिक परिवर्तन चुंबकीय तूफ़ान कहलाते हैं, जो चुंबकीय प्रेक्षण और सर्वेक्षण की शुद्धता में बाधक होते हैं, परंतु उपयुक्त सुधारों के द्वारा त्रुटियों को निरस्त करना सदैव संभव होता है।

फील्ड यंत्रों को ऊर्ध्वाधर एवं श्रैतिज बल विचरणमापी (variometer) कहते हैं। ऊर्ध्वाधर बल चुंबकत्वमापी क्षैतिज अक्ष की एक चुंबकीय पद्धति का बना होता है, जिसमें चुंबकत्व क्षेत्र से उत्पन्न वर्तन आघूर्ण (turning moment) केंद्र से परे स्थित भार के गुरुत्व आघूर्ण से क्षतिपूरित होता है। क्षतिपूरण करने वाले चुंबकों का उपयोग क्षेत्र की तीव्रता के अंशत: क्षतिपूरण करने में होता है, जिससे यंत्र के मापन परास का विस्तार होता है। उपयुक्त क्षतिपूरण का विकल्प निलंबित चुंबकीय तंत्र के घेरे में स्थापित हेल्महोल्ट्स (Helmholtz) कुंडली में धारा परिवर्तित कर क्षतिपूरण करना है। पार्थिक चुंबकीय क्षेत्र की क्षेतिज तीव्रता मापने के लिये इसी प्रकार का क्षैतिज बल चुंबकत्वमापी उपलब्ध है।

वायुवाहित चुंबकत्वमापी का क्षेत्र सूक्ष्मग्राही तत्व धातु, या अन्य उच्च चुंबकशीलता (permeability) वाले पदार्थ, का छड़ जैसा समुच्चय होता है, जिसपर उपयुक्त कुंडली लिपटी होती है और यह परस्पर लंब जिंबलों (gimbals) पर चढ़ा होता है। सर्वो यंत्र क्रियाविधि (servo mechanism) धातु अक्ष को पूर्ण चुंबकीय तीव्रता की दिशा में स्वत: अनुरक्षित करती है। संपूर्ण तीव्रता के विचरण एक काग़ज़ के गोले पर अंकित होते हैं, जो एक समान समय दर से अंकनकारी कलम के साथ आगे बढ़ता है। शोरन (Shoran), या स्थान निर्धारण की किसी रेडियो युक्ति, से खड़ी निचाई की धरती का फोटोग्राफ लेकर संगत स्थिति की सूचनाएँ प्राप्त करते हैं। चुंबकीय और स्थलीय आँकड़ों में सहायक साधनों द्वारा समन्वय स्थापित किया जाता है। नियोजित दूरी के अंतर और निश्चित बैरोमीटरी ऊँचाई पर समांतर रेखाओं पर सर्वेक्षण विमान उड़ता है। वायु चुंबकीय (aeromagnetic) सर्वेक्षण द्वारा बड़े क्षेत्रों में कम लागत पर सर्वेक्षण किया जा सकता है।

हाल ही में एक नवीन चुंबकत्वमापी का आविष्कार हुआ है, जिसका नाम प्रोटॉन अयन चुंबकत्वमापी (proton precession magnetometer) है। मापनीय क्षेत्र की अपेक्षा बड़े और अनुप्रस्थ क्षेत्र के प्रयोग से मापन का आरंभ होता है। इस क्षेत्र को सहसा हटा लेने पर प्रोटॉन धूर्ण चुंबक नए वितरणों में अयन (precession) करते हैं, जो मापन किए जा रहे क्षेत्र का अभिलक्षक होता है। अयन आवृति इस क्षेत्र की तीव्रता का रैखिक फलन (linear function) होती है। अयन क्षणिक घटना होती है, अत: यह मापन एक या दो सेकंड के भीतर हो जाना चाहिए। आवृत्ति निर्धारण के लिये इलेक्ट्रॉनिकी गिअर का उपयोग किया जाता है। इस उपकरण का सबसे बड़ा लाभ मापन की परिशुद्धता है।

सिद्धांत रूप से चुंबकीय आँकड़ों का परिकलन गुरुत्व आँकड़ों के परिकलन के समान है। अंतर इतना ही है कि चुंबकीय पिंड में दो विपरीत ध्रुव और अवशिष्ट चुंबकन होते हैं, जिनके कारण चुंबकीय असंगति स्रोत के आयामों से सदैव सीधी सहचरित नहीं होती।

वैद्युत अन्वेषण

यह धात्विक खनिजों के अन्वेषण में उपयोगी है। कुछ खनिज निक्षेप अपने निकटतम पर्यावरण में स्वत: प्रवर्तित भूधाराएँ उत्पन्न करते हैं, जिनके अनुवर्ती वैद्युत विभवों को स्वविभव कहते हैं। किसी क्षेत्र की समविभव रेखाओं के नक्शे बनाकर, स्वविभव के स्रोत को प्राय: ज्ञात कर सकते हैं। विस्तृत क्षेत्रों को प्रभावित करने वाली स्थल मंडलीय (telluric) धाराएँ भी होती हैं, जिन्हें वायुमंडल के धारा परिसंचरणों से संबंद्ध माना जाता है। ये वायु मंडलीय धाराएँ प्राकृतिक वैद्युत विभवों के स्थानीय विवरण में भी योगदान करती है।

सर्वाधिक उपयोग में आने वाली विधियाँ चालन (conduction), या प्रेरण (induction) द्वारा पृथ्वी में कृत्रिम धाराएँ उत्पन्न करती हैं। प्रयुक्त उपस्कर से धरती में पर्याप्त वैद्युत या विद्युतचुंबकीय विक्षोभ उत्पन्न होता है। धारा के प्रवेश की गहराई उपकरण की स्थिति की ज्यामिति, प्रयुक्त आवृति और पृष्ठ से नीचे की ओर की चालकता पर निर्भर करती है। एक ही उपकरण व्यवस्था द्वारा अनेक आवृत्तियों पर मापन किए जाते हैं।

खनन उद्योग में मुख्यत: विद्युतचुंबकीय विधियों का प्रयोग किया जाता है। इनमें एक पारेषण कुंडली, जिसे उपयुक्त आवृत्ति पर उत्तेजित किया जाता है और एक ग्राही कुंडली होती है, जो विद्युतचुंबकीय क्षेत्रों के एक या अधिक अवयवों को कई प्रेक्षण बिंदुओं पर मापती है। ग्राही कुंडली प्राय: इस प्रकार अभिविन्यस्त होती है कि पारेषक के साथ उसका सीधा युग्मन न्यूनतम हो और तब अवशिष्ट प्रभाव पृथ्वी में प्रेरित धाराओं के कारण होते हो। चालकता असंगतियाँ अयस्क पिंडों की उपस्थिति का पता देती है।

वैद्युत विधियाँ वायुवाहित हो गई हैं। पारेषक और ग्राही कुंडलियाँ एवं सभी सहचरित गिअर ऐसे वायुयानों में ले जाए जाते हैं, जो सामान्यतया धरती के निकट ही उड़ते हैं।

भौम जल के अन्वेषण में वैद्युत विधियों का सफल उपयोग हुआ है। कूप अभिलेखी प्रक्रियाओं के रूप में तेल अन्वेषण में इनका अतिशय अपयोग है। गड़ी हुई पाइप लाइनों की स्थिति एवं देश के भीतरी भागों में बिछी हुई सुरंगों का पता लगाने और अन्य सैनिक परिचालनों में इनका उपयोग होता है।

भूकंप अन्वेषण

इस विधि में विस्फोट द्वारा पृथ्वी में तरंगें उत्पन्न कर, उनकी पहचान भूफोनों (geophones, ट्रांसड्यूसरों या भूकंपमापियों) से करते हैं, जो उन्हें विद्युत स्पंदों में बदलकर एक दोलनलेखी (oscillograph) के एकसमान गति वाले फीते पर अभिलिखित करते हैं। तरंग प्रारंभ या विस्फोट क्षण को तार या रेडियो संकेत द्वारा अभिलेखक गिअर को पारेषित करते हैं। हर भूफोन में एक फीते पर हो रहा अनुरेखण (tracing), उन तरंगों और तरंगमालाओं का शून्यकाल प्रदर्शित करता है, जो तरंग के प्रकार और पथ पर निर्भर काल में भूफोन तक पहुँचते रहते हैं। कई भूफोनों को त्रिकोणादि किसी समाकृति में व्यवस्थित कर तरंगमालाओं का उनके प्रकार और पथ से साहचर्य सरल किया जा सकता है। भूफोन मुख्यत: भूगति के ऊर्ध्वाधर घटक की अनुक्रिया करते हैं। तरंगमालाओं को अभिलेखों पर परावर्तित, अपवर्तित अनुदैर्ध्य तरंगों और अनुदैर्ध्य एवं अनुप्रस्थ दोनों घटकों से निर्मित अंतरापृष्ठ (interface) तरंगों के रूप में पहचाना जा सकता है। अंतरापृष्ठ तरंगों में पृष्ठतरंग भी सम्मिलित हैं।

विस्फोटबिंदु से भूकंपमापी तक किसी तरंगमाला का यात्राकाल सेकंड के हजारवें भाग तक परिशुद्ध रूप में अभिलेखों से निर्धारित किया जा सकता है। सामान्य सिद्धांत और ज्यामिति के उपयोग से डाल, पृष्ठीय असातत्य आदि की पहचान की जा सकती है। भूकंपी विधि को सामान्यत: दो वर्गों में विभाजित करते हैं-

  1. अपवर्तन प्रविधियाँ
  2. परावर्तन प्रविधियाँ

अपवर्तन प्रविधियाँ

अपवर्तन विधि में एक विस्फोटबिंदु और छह या अधिक भूफोन एक सरल रेखा में समान अंतर पर रखे जाते हैं। विस्फोट को फायर कर अभिलिखित कर लिया जाता है। प्रत्येक अनुरेखण, विस्फोटबिंदु से भूफोन तक सर्वप्रथम आने वाली तरंग के यात्राकाल को बताता है। ग्राफ पर समय की दूरी अंकित की जाती है।

अपवर्तन विस्फोट पर्याप्त गहराई में उच्च वेग स्तरों के लिये प्रभावकारी हैं। भूकंपमापी रैखिक व्यूह (linear array) के साथ साथ वृत्ताकार, या पंखे जैसे, व्यूह भी काम में आता है। पंख विस्फोट से लवण गुंबदों की खोज हुई है, क्योंकि लवण गुंबद में तरंगवेग गुंबद को घेरने वाले अवसादों की अपेक्षा अधिक होता है।

परावर्तन प्रविधि

यह मुख्यत: प्रतिध्वनि से गहराई का पापन (echo sounding) है। प्रत्येक असातत्य पर जब प्रत्यास्थता, धनत्व या दोनों के परिवर्तन के परिणामस्वरूप वेग में परिवर्तन होता है, तब ऊर्जा परावर्तित होती है। विस्फोटबिंदु के समीप ही 1000 से 2000 फुट की दूरी पर भूकंपमापी रखा जाता है। भूकंपमापी और विस्फोट बिंदु के बीच दूरी के बढ़ने के साथ नीचे पररावर्तन पृष्ठ तक तरंग के जाने और वहाँ से प्रतिध्वनि के रूप में लौटने का संपूर्ण समय अंतराल बढ़ता है। परावर्तन अभिलेखों से परावर्तन क्षितिज की गहराई और प्रवणता ज्ञात होती है। प्रेक्षित समय को दूरी में परिवर्तित करने के लिये वेग ज्ञात होना चाहिए ओर विभिन्न परावर्तन के स्तरों में वेग का आकलन करने में अनुभव काफ़ी सहायक होता है।

भू-रसायनी अन्वेषण

इस विधि का आधार यह है कि किसी गड़ी हुई प्राकृतिक संपानिक्षेप की पृष्ठमृदा और जलपर्यावरण में निक्षेप से व्युत्पन्न (derived) रासायनिक यैगिक, अनेक प्राकृतिक प्रक्रम हैं। स्त्रोत के निकट की संकेद्रण उच्चतम होना चाहिए। पेट्रोलियम के अन्वेषण में मृदा और गैसों का रासायनिक विश्लेषण सहायक रहा है। धात्विक तत्वों, या इन तत्वर्गों की उपस्थिति परिपार्श्व के जल, मृदा और वनस्पति तक में 1/10 लाख सांद्रण में रहने पर भी पहचानी जा सकती है।

रेडियोऐक्टिव विधियाँ

इन विधियों में यूरेनियम, थोरियम जैसे रेडियोऐक्टिव तत्वों के रेडियोएक्टिव विकिरण और उनके विघटन उत्पादों को पहचाना जाता है। क्षेत्र में भूमि पर प्राय: गाइगेर (Geiger) गणित्र या प्रस्फुर (Scintillation) गणित्र का उपयोग किया जाता है। इनका उपयोग खोदे हुए छेदों और निचाई पर उड़ने वाले वायुयानों में किया जा सकता है। इन विधियों का अधिकतर उपयोग यूरेनियम अयस्क की खोज में किया जाता है।

रेडियोऐक्टिव पदार्थों के a, b और g विकिरणों में से केवल g विकिरणों की पहचान हो पाती है, क्योंकि a और b विकिरणों की वेधन क्षमता अत्यल्प होने के कारण ये चंद फुट मोटे मृदा आवरण में अवशोषित हो जाते हैं और हवा में शीघ्र क्षीण हो जाते हैं।

कूपों में रेडियोएक्टिवता की माप से तैल बालू या रचना सीमाओं का संकेत प्राप्त होता है, जिनसे भ्रंश, रेडियोऐक्टिव अयस्क और रेडियोऐक्टिव स्त्रोतों की स्थिति निर्धारित की जाती है। सतह पर रेडियोएक्टिव मापनों से रेडियोऐक्टिव खनिज, अयस्क, तेल और भूमिगत बनावट का स्थान निर्धारण करने में सहायता मिलती है।

बिद्ध छिद्र द्वारा अन्वेषण

भौतिक शैल गणों के निर्धारण पर भूभौतिक कूप परीक्षण आधारित है। इसका उद्देश्य कूपों का समन्वयन और व्यापारिक खनिज (तेल, गैस और कोयला) की पहचान है। कूप अभिलेखी विधि के उपविभाग ये हैं।

  1. वैद्युत
  2. ऊष्मीय
  3. रेडियोऐक्टिव
  4. भूकंपी
  5. विविध अभिलेखन (logging), प्रविधियाँ।

वैद्युत अभिलेखन विधि

इस विधि का उपयोग सर्वाधिक होता है। सामान्यत: प्रतिरोधकता और स्वत: प्रवर्तित विभव मापा जाता है। ये दोनों वैद्युतलक्षण रचनाओं के अश्मविज्ञान (lithology) के अनुसार काफ़ी परिवर्तनशील हैं। दो शक्ति विद्युदग्रों के द्वारा धारा भेजी जाती है। इन विद्युदग्रों के बीच का विभवांतर बिद्ध छिद्र में एक उर्ध्वाधर रेखा में मापा जाता है। उच्च प्रतिरोधकता का तात्पर्य अपेक्षाकृत अल्प चालक तरल से भरी अरध्रीं संरचना, या अचालक तरल या गैस से भरी सरध्रीं सरंचना है। निम्न प्रतिरोधकता का अर्थ चालक तरल से भरी सरध्रं रचना है। उच्च स्वत: विभव से परागम्य रचना का संकेत प्राप्त होता है। प्रतिरोधकता और स्वत: विभव अभिलेखन के संयोग से कभी कभी अनोखे परिणाम प्राप्त होते हैं।

ऊष्मीय अभिलेखन

भू-ऊष्मीय प्रवणता (geothermal gradient) रचना की चालकता पर निर्भर करती है। अत: रचना के अभिलेखन में कूपों की विभिन्न गहराइयों पर सापेक्ष ताप प्रवणताओं के मापन का उपयोग किया जाता है। इससे छादन (casing) के पीछे सीमेंट की ऊचाई, कुछ रचनाओं की स्थिति और गैस एवं पानी के बालू के स्थान का पता चलता है। विद्ध छिद्रों में प्रवेश करने पर, दाब के घटने के फलस्वरूप गैस ठंडी होती है और ऊष्मीय अभिलेखन में तीव्र न्यूनता उत्पन्न करती है।

रेडियोऐक्टिव अभिलेखन

इसका उपयोग छादित एवं अछादित दोनों प्रकार के कूपों में होता है, क्योंकि इससे कुछ अनोखी सूचनाएँ प्राप्त हो सकती हैं। गामा किरण अभिलेखन से उन अवसादों की प्राकृतिक रेडियोऐक्टिवता का अभिलेखन उस गामा किरण सक्रियता का अभिलेख प्रदान करता है, जो छिद्र में उतारे हुए स्त्रोत से उत्सर्जित न्यूट्रॅानों द्वारा रचनाओं में कृत्रिम रूप से उत्पन्न होती हैं। इसका सर्वाधिक महत्व इस तथ्य में निहित है कि न्यूट्रॉनों के साथ किरणन (irradiation) की अवधि में शैल पदार्थ का गामा किरण उत्पादन शैलों के हाइड्रोजनांश से घनिष्ठ रूप से संबद्ध है। इसलिये न्यूट्रॉन अभिलेख की न्यूनता से तेल या पानी संस्तर की पहचान की जा सकती है। इधर हाल ही में कुछ अन्य केंद्रकीय (nuclear) अभिलेखन प्रविधियों, जैसे घनत्व, क्लोरीन, स्पेक्ट्रमी गामा, बंदी (captive) गामा, द्वारा प्रेरित (gated induced) गामा, सक्रियकरण (activation) ट्रेसर (tracer) और केंद्रकीय चुंबकत्व अभिलेखन का विकास हुआ है।

भूकंपी अभिलेखन

ये मापन कूपों में निम्नलिखित कार्यों के लिये किए जाते हैं

  1. ऊर्ध्वाधर वेग वितरण की पहचान के लिये,
  2. ऊर्ध्वाधर और पार्श्व अपर्वतन अन्वेषण के परास का विस्तार करने के लिये,
  3. छिद्रों की वक्रता के निर्धारण के लिये,
  4. कुछ रचनाओं की पहचान के लिये।

विस्फोट सतह पर होता है और संसूचक (detectors) छिद्र में या इसके विपरीत संसूचक सतह पर रहता है और विस्फोट छिद्र होता है। इस विधि का अनुपयोग उन क्षेत्रों तक सीमित हैं जहाँ कुएँ के चारों ओर वेग वितरण पूर्णतया एकसमान है।

विविध अभिलेखन प्रविधियाँ

इसके अंतर्गत चुंबकीय विधियाँ है, जिनमें कुओं से प्राप्त क्रोड़ों का प्रयोगशाला में परीक्षण और कैलीपर अभिलेखन जिसके उपयोग से विद्ध छिद्र के परिवर्ती व्यास का मापन होता है और फलत: रचनाओं के शैल विज्ञान और नति मापनों के संबंध में कुछ सूत्र मिलते हैं, सम्मिलित हैं। अभिलेखन विधियाँ बड़ी ही सशक्त हैं।



पन्ने की प्रगति अवस्था
आधार
प्रारम्भिक
माध्यमिक
पूर्णता
शोध

टीका टिप्पणी और संदर्भ

बाहरी कड़ियाँ

"https://bharatdiscovery.org/bharatkosh/w/index.php?title=भू-भौतिकी&oldid=612988" से लिया गया