भारतकोश के संस्थापक/संपादक के फ़ेसबुक लाइव के लिए यहाँ क्लिक करें।

शुल्व सूत्र  

शुल्व सूत्र (अंग्रेज़ी: Shulba Sutras) हिंदू धार्मिक दस्तावेज़ों का एक संग्रह है, जिसे 800 ई.पू. से 200 ई.पू. के बीच लिखा गया। यह पुस्तकें गणितीय रूप से बहुत महत्वपूर्ण हैं। कई विद्वानों का विश्वास है कि ये गणित की सबसे पुरानी पुस्तके हैं। इन पुस्तकों मे बहुत से गणितीय सिद्धांत हैं जो कि बताते हैं कि प्राचीन भारत में गणित अन्य प्राचीन संस्कृति से भी ज़्यादा अग्रिम था। यहाँ तक कि शुल्व सूत्र में लिखे कुछ प्रमेयों का यूरोपियों द्वारा कई शताब्दियों के बाद आविष्कार किया जा सका।

आवश्यकता

प्राचीन संस्कृतियों में गणित का प्रारंभिक विकास धार्मिक प्रथाओं और त्योहारों के कारण आवश्यक हो गया था। लोगों को बलि या पूजा के कृत्यों के लिए और कुछ त्योहारों के शुभ समय के सटीक गणना की आवश्यकता थी। उन्हें सूर्य और चंद्रमा की उदय और अस्त होने और सौर और चन्द्र ग्रहण की घटनाओं के सही समय के ज्ञान की भी आवश्यकता थी। इन सभी के लिये खगोल विज्ञान का अच्छा ज्ञान आवश्यक है, अर्थात गणित, तल और गोलीय ज्यामिति और त्रिकोणमिति का सही ज्ञान और संभवतः सरल खगोलीय उपकरणों के निर्माण का भी ज्ञान आवश्यक था। प्रारंभिक चरण में गणित मुख्य रूप से दो व्यापक परंपराओं में विकसित हुआ- ज्यामितीय और अंकगणित, बीजगणित के मूलभूत विकास सहित। पुरा-यूनानी प्राचीन सभ्यताओं में, यह भारत ही है कि जहाँ हम गणित की इन दोनों महान धाराओं पर मजबूत जोर देखते हैं। अन्य प्राचीन सभ्यताओं, जैसे बेबीलोन और मिस्र ने मुख्य रूप से अंकीय गणनाओं में प्रगति की थी।

सात शुल्व सूत्र

भारतीय गणितज्ञों ने इस क्षेत्र में बहुत काम किया है, जो शुल्व सूत्र के रूप में जाना जाता है। केवल सात शुल्व सूत्र को वर्तमान में जाना जाता है। इन्हें बोधायन, आपस्तम्ब, कात्यायन, मानव, मैत्रियन, वाराह और वधुला के नाम से जाना जाता है। उन ऋषियों या साधुओं के बाद जिन्होंने उन्हें लिखा था। कात्यायन सूत्र वेदों के उस भाग से हैं, जिसे शुक्ल तजुर्वेद कहते हैं। जबकि अन्य सभी कृष्ण यजुर्वेद से लिये गये हैं। बोधायन, आपस्तम्ब और कात्यायन सूत्र गणितीय बिंदु से महत्वपूर्ण हैं। मैत्रियन मानव सूत्रों के समान है। एक अन्य शुल्व सूत्र हिरण्यकशिन भी पाया गया है, जो आपस्तम्ब सूत्र के समान है।

जटिल ज्यामितीय निर्माण

शुल्व सूत्रों से कुछ जटिल ज्यामितीय निर्माण नीचे सूचीबद्ध हैं-

  1. किसी दिए गए वर्ग के अपवर्त्य के बराबर वर्ग की रचना करना।
  2. किसी वर्ग के अपवर्तक के बराबर वर्ग की रचना करना।
  3. दो विभिन्न वर्गों के योग के बराबर वर्ग की रचना करना।
  4. दो विभिन्न वर्गों के अंतर के बराबर वर्ग की रचना करना।
  5. आयत के बराबर वर्ग की रचना करना।
  6. वर्ग के बराबर आयत की रचना करना।
  7. वर्ग के बराबर त्रिभुज की रचना करना।
  8. वृत्त के बराबर वर्ग की रचना करना तथा इसका विपरीत।
  9. भुजायें ज्ञात होने पर आयत की रचना करना।
  10. किसी दी हुई रेखा पर वर्ग की रचना करना।
  11. दो भुजाओं और उनके झुकाव दिए रहने पर समांतर चतुर्भुज की रचना करना और इसी प्रकार की अन्य रचनायें एवं रुपान्तरण।

ऊपरोक्त केवल कुछ उदाहरण हैं। असल में शुल्व सूत्र बहुत से जटिल गणितीय निर्माणों से भरे पड़े हैं।

पन्ने की प्रगति अवस्था
आधार
प्रारम्भिक
माध्यमिक
पूर्णता
शोध

टीका टिप्पणी और संदर्भ

संबंधित लेख

वर्णमाला क्रमानुसार लेख खोज

                              अं                                                                                                       क्ष    त्र    ज्ञ             श्र   अः



"https://bharatdiscovery.org/bharatkosh/w/index.php?title=शुल्व_सूत्र&oldid=642807" से लिया गया